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Domain Integral Equation Analysis of
Integrated Optical Channel and Ridge

Waveguides in Stratified Media
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Abstract —A domain integral equation approach has been developed to

compute both propagation constants and corresponding electromagnetic

field distributions of guided waves in an integrated opticaf wavegnide. The

wavegnide is embedded in a stratified medium. The refractive index of the

wavegnide may be graded, but the refractive indices of the layers of the

stratified medium are assumed to be piecewise homogeneous. Tfre wave-

Wide is regarded as a perturbation of its embedding, so the electric field

strength can be expressed in terms of a domain integraf representation.

The kernel of this integraf consists of a dyadic Green’s function which is

constructed using an operator approach. By investigating the electric field

strength within the wavegnide, an integraf equation can be derived which

represents an eigenvahre problem which is solved nomericafly by applying

the method of moments. The application of the domain integraf equation

approach in combination with a numericafiy stable evahration of the

Green’s kernel functions provides a new and vahrable tool for the charac-

terization of integrated opticaf wavegnides embedded in stratified media.

Numerical results are presented for various channel and ridge wavegnides

and are compared with those of other metkods where possible.

I. INTRODUCTION

w ITH THE INCREASING number of applications

of integrated optical devices, the need for mathe-

matical models to analyze their waveguiding properties is

growing (Lagasse et al. [1]). As the design criteria for these

devices, such as directional couplers and modulators, be-

come tighter, the results of approximative methods often

do not have the desired accuracy. Examples of approxima-

tive methods are the (corrected) effective index method

(van der Tol et al. [2], Knox et al. [3]), the finite-difference

method (Stern [4]), and methods based on a variational

technique (Akiba et al. [5]). Examples of rigorous methods

are the finite-element method (Yeh et al. [6]), and the

domain integral equation method (Pichot [7], Bagby et al.

[8], van Splunter et al. [9]). In the domain integral equation

method the waveguide is regarded as a perturbation of its

embedding; thus a domain integral equation can be de-
rived for the electric field strength within the waveguide.

The kernel of the domain integral equation is the Green’s
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function of an electric current line source. For the deriva-

tion of the Green’s function, the method presented by Ali

et al. [10] and Sphicopoulos et al. [11] has been modified

and extended, thus leading to a numerically stable calcula-

tion scheme. The application of the domain integral equa-

tion method in combination with a numerically stable

evaluation of the Green’s kernel functions provides a new

and valuable tool for the characterization of integrated

optical waveguides embedded in stratified media. As such,

the domain integral equation method for the modeling of

diffused channel waveguides, presented by Baken et al.

[12], is extended and allows for the first time a rigorous,

alternative modeling of channel and ridge waveguides in

stratified media.

H. FORMULATION OF THE PROBLEM

The waveguide 9W is embedded in a stratified medium.

This embedding comprises N subdomains, the layers

91,92,... , QN (N z 2). Two of the subdomains are semi-

infinite domains, namely the substrate QI and the super-

strata Q~. The layers Q. (1 < n < N), each with finite

thickness, are sandwiched between ~1 and @~. The posi-

tion in space is specified using a right-handed Cartesian

reference frame Oxyz; the x axis is taken perpendicular to

the interfaces of the layers. The z axis is chosen such that

the material properties of the waveguiding configuration

are invariant in the z direction. A cross section perpendic-

ular to the z axis is given in Fig. 1. All media are assumed

to be dielectric. The permittivities of the layers are con-

stant; thus the (relative) permittivity profile of the embed-

ding can be described with the stepwise-constant function

c~(x). The permittivity of the waveguide QW may be

inhomogeneous: c~(x, y).

Time-harmonic solutions of the source-free Maxwell’s

equations are sought that represent guided wave modes

propagating in the positive z direction. The electromag-

netic field constituents of angular frequency a and axial

wavenumber k= have the form

{E, H}(x, y,z; ti)={e, h}(x, y,k=; a)exp(-jkzz)

(1)

where the complex time factor exp ( jut) is omitted. The

waveguide @W being regarded as a perturbation of the
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Fig. 1. The wavegniding configuration with the waveguide $2W and the

layers S2m.

embedding, the electric field e and the magnetic field h

satisfy the Maxwell’s equations:

–V, Xh+ju~oc~(x)e= – J

vrXe+jtipoh=O (2)

where Vf = (8X, fly, – jkz) and J represents the electric

contrast-source current density that is defined within the

waveguide .f2W through

J(x, y)=jawo{~w(x, y)–cb(x)}e(x, y) (3)

and vanishes everywhere outside QW. Using Lorentz’s re-

ciprocity y theorem, an integral representation for the elec-

tric field for all values (x, y) can be derived:

e(x, y) = –jupO J( ~ x, y; x’, y’)J(x’, y’) dX’d~’ (4)
9w–

with ~ being the dyadic Green’s function of the electric

type Gf an electric-current line source. This Green’s func-

tion is the solution of the inhomogeneous wave equation

v,xv, xe–k;cb(x)~ =la(x–x’)a(y– y’) (5)— —

with S(x) the Dirac delta function, ~ the 3-by-3 identity

matrix, and /c. = /=. Note tha~ the relation in (4)

expresses the electric field at an arbitrary point (x, y) in

terms of the Green’s function and the electric field within

the waveguide. If the point (x, y) is chosen within the

waveguiding region BW, (4) becomes a domain integral

equation for the electric field e within &2W. Solving this

equation can be regarded as solving an eigenvalue prob-

lem. The equation yields nontrivial solutions for a discrete

set of values of k, that correspond to the propagation

constants of propagating guided wave modes. Once these

values have been determined, the corresponding electric
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field within Qw can be computed. Subsequently the elec-

tric field ‘outside the waveguide can be evaluated from (4).

To execute the procedure outlined in the foregoing, the

kernel of the domain integral equation, the Green’s func-

tion, must first be deter@ned.

III. DERIVATION OF THE GREEN’S FUNCTION

The kernel of the domain integral equation is the Green’s

function @ which satisfies the inhomogeneous wave equa-

tion (5). fie right-hand side of the latter equation vanishes

in every layer except $2,, in which the electric current line

source is situated. Therefore, the Green’s function ~ ~ in

an arbitrary layer Q. can be written as the composit~n of

a primary and a secondary part:

~ =g~C3n$+GJ with rz={l, -.., N} (6)
— —

where 8H, is the Kronecker delta. The primary Green’s

function ~ p is the particular solution of the inhomoge-

neous waTe equation; the secondary or scattered Green’s

function @ is the complementary solution:

vjvtxgp-k:gp=~a (x-x’ )a(y-y ’)

vtXvtx@-k:Q:=O. (7)
— —:

In (7) the wavenumber of the layer Q. is introduced

through k:= k:cn. The Green’s functions in two succes-

sive layers are connected through the boundary conditions.

To solve the wave equations they are submitted to a spatial

Fourier transformation defined by

3(x; ky) =~m S(x, y)exp(jkYy)dy. (8)
—m

The primary Green’s function in the (x, ky) domain is

then given by

~p(x, ky; x’, Y’) = ~k2u=~~pexp ( – QIX – x’1) =p (jk,y’)
—

Ss

– $ 8(x – x’)exp( jkyy’)i,,8iX
s

(9a)

with

[

k:+ f/j2 sgn (x – x’) jkyu, sgn

~p = sgn (x – T’) jk,Q k; – k;
—

sgn (x – x’) jk,U, – kvkz

x – Jc’)jk=~

– kykz

k:–kl

(’ b)

In (9a), the tensor product is used (iX@ iX)z~ = tlli S1.j, and

in (9b) the sign function sgn (x – x’) = – 1,0, +- 1 If x <

x’, x = x’, x > x’ respectively. The phase factor Un is de-
fined as

u.={-. (lo)

The principal value is taken for the root in (10); i.e.,

Re(U.) >0 or Re(U.) = O and Im(U.) >0. When the ho-
mogeneous wave equation is submitted to the Fourier
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transformation, a first-order ordinary differential equation

is obtained which has a solution of the form

Q=~lexp( -~,(x-x.)) +j~exp(+U.(x-xn))
— —

(11)

where the matrices ~“~ and $; contain constants which can

be interpreted as thE amplitfides of upward and downward

wavelets respectively. To derive expressions for these ma-

trices, and implicitly for the scattered Green’s function, the

boundary conditions for the electric Green’s function and

the expression for the primary Green’s function are used.

The expression for the scattered Green’s function in the

(x, /cY) domain in layer Q. then becomes

1

(
~~(x, ky;x’,y’) = -* A-. exp(– U.(x– x.))
—

ss—

+ ~,lexp(+ 17~(x – x~))) exp (jk,y’) (12a)
—

where the matrices ~“~ and & are given by

&(kV; X’) = ~::. .lA-:+ ~;EA:
— — —

with

source in x = x’ at the interface x = x,, is given by

mD1 –exp(– U~(x, –x’))

Dz = )

(14)
xfw(+~ (x,-x’))

def
where &~ iXX = – f~~iX and ~~EoiXX ~f + ~~EoiX.

— — — —

For the downward recurrence transmission and reflec-

tion functions, in which the superscript n‘ ~ N’ indicates

the transition from layer $2N to layer $2.,, the following

relations are used repeatedly, starting with n + 2 = N’

until n = n’:

t !l+n+l= t~~~+l-”+2+ r~r!+l+n+2exp (-2~n)

r_~-~+l=r~tI+l-n+2+t~rE+1+ “+2exp(—2r~)

t~*n+l=rar~+ 1+n+2+t~t~+ 1+ ’’+2exp(-2rn)

r ~-”+1= t~r~+1+”+2+ rmt~+1+”+2 exp(–2r~) (15a)

N’–1+N &ft+ —t N–1
ry–l+wgf rN, _l (15b)—

and

$-n=f un(xn–xn.l) ~s-~s&f ~ T,. (16)
~=~+1

L
00

k;
o

g:E= k;+kz o @ – k,kz .
— .7

0 – kykz k:

In (12), the symbol u is used to condense the notation; as

indicated in the subscripts in (12b), it can take the values

+ 1 and – 1. The expressions for the matrices in (12b)

show that they can be separated into two parts. The first

part, with the superscript SH, is the electric Green’s func-

tion of the transverse magnetic contribution. The second
part, with the superscript SE, is the electric Green’s func-

tion of the transverse electric contribution. The scalars A“.

and ~~ for layer ~~, where n >s, can be expressed using

the downward recurrence transmission and reflection func-

tions (see Sphicopoulos et al. [11]):

(12C)

(12d)

The expressions for the scalars A“. and & in (13) apply to

both the electric and magnetic contributions. The trans-

mission and reflection factors, however, are different for

the electric and magnetic contributions; they are given by

LH(E) =1+ rnH(E)
n rfl(E) =1 - rff@’ (17)

where.

Unen+l
rnH= ————

u

Un+lcn -
r;=$. (18)

n

(13)

The vector ( Dl, D2 )‘, which can be interpreted as a source Equivalent expressions can be derived for the scattered
vector expressing the strength of the electric current line Green’s function in the case of n <s.
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The recurrence scheme of Sphicopoulos et al. [11] for

the transmission and reflection coefficients in (15a) has

been modified so as to yield a numerically stable imple-

mentation. The correctness of the expressions for the scat-

tered Green’s function can be verified by taking c1= c~ =
. . . = c~. In that case the interfaces are virtual; in fact,

only the primary Green’s function exists. Indeed, the scat-

tered Green’s function becomes identical to the primary

Green’s function in every layer Q. where n #s.

IV. NUMERICAL IMPLEMENTATION

In order to find the nontrivial solutions of the domain

integral equation, the method of moments is applied.

The domain QW is divided into L subdomains B:,

1= {1... , L}. For both the expansion and the weighting

functions, the rectangle function rect’ is used (Galerkin’s

method (Barrington [13])). This function takes the value 1

within $2; and vanishes outside f2~. Assuming that the

electric field strength in $2; is constant and equal to the

actual electric field strength e~ in the barycenter (xl, y‘) of

$2:, the method of moments yields the result

with k={l, . ..L} (19)

, d:f
if CW— ~W(x’, y’) and c~d~f~~(xl). With (19), a system of

3 * L algebraic equations is derived for the unknown elec-

tric field strength e$ = (e$, ~, et, .,, e~, ,), which can be

rewritten as

? L, S~e~,,=O (i=x, y,z). (20)
[=l,]=x, y,z

In (20), the 3 * L by 3 * L matrix J is defined— by

(21)

ilki and81,being Kronecker deltas, and

(22)

Subsequently, the system of algebraic equations is solved

by searching for those values of k,=/? rn for which the

determinant of the 3 * L by 3 * L matrix ~ vanishes. Once

these eigenvalues /?M have been determined, the accompa-
nying vector in the null space of ~ can be calculated.

Obviously, the eigenvalue ~ rn corresponds to the propaga-

tion constant of the propagating guided mode m, and the

eigenvector to its electric field distribution within the

waveguide 9W. In the numerical evaluation of ~~’,

the spatial Fourier-transformed Green’s function

G,J(x, kY; x’, y’) is used instead of GIJ(x, y; x’, y’). To

avoid the logarithmic singularity in the so-called self-patch,

i.e., when k = 1 (see Yaghjian [14] and, more recently,

Viola [15]), the order of the Fourier and subdomain inte-

grations in M~l is interchanged:

}
.exp( – jkYy) dx’dy’dxdv dky. (23)

The integrations over Q: and Q:, can be performed

analytically; the result is given in the Appendix.

Computation times for the numerical evaluation of the

system’s matrix $ are substantially reduced by exploiting

the reciprocal priiiperties of the Green’s function and from

the possible presence of geometrical symmetries in the

waveguiding configuration. The former make it possible to

restrict the calculation of the Green’s function to values

x > x’, since

Gc, (x, y;x’, y’; kZ) =Gjl(x’, y’; x,y; –kz). (24)

The latter allows a reduction of the size of the system’s

matrix by distinguishing between “odd” and “even” field

solutions. The poorly converging inverse Fourier integral

with the factor k; in the iv~ iY component of the primary

Green’s function (cf. (9b)) is avoided using the relation

k; – k; = k: – U$ (cf. (10)). For the computation of (23),

the integration interval (– m, + m) is reduced to [0, + co).

Subsequently, fast F$urier transforms can be applied and

the scalars A. and B., which are equal for all components

of the scattered Green’s function, can be precalculated

(cf. (13)).

When in the guiding region the permittivity cW(X, y) is

continuous, the unknown field quantities should be contin-

uous as well. The method of moments executed with point

matching does not satisfy this condition and leads to

nonphysical charge layers on the boundaries of the subdo-

mains, and this could lead to numerical instabilities. How-

ever, in the applied implementation, these difficulties do

not arise; an increase in the number of subdomains leads

to a monotonic convergence of the results toward the exact

solutions (Baken et al. [12]). Finally, it should be noted

that the denominator t~- N in (13) is the characteristic

function of the stratified medium (Tsang [16]). The zeros

of this function are the propagation constants ~$,~ of the

transverse electric and transverse magnetic propagating

slab modes TEP and TMP, respectively. These propagation

constants are encountered as simple poles in the integrand

of the inverse Fourier integral in (23). The poles only

appear on the real kY axis if ~ m is smaller than &“,~. In
that case their location is

Difficulties arise only if k;= O, and these can be circum-

vented by then taking the stratified media slightly 10SSY.
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Fig. 2. Dispersion curves of the fundamental modes TEW and TMm of

a rectangular waveguide in a homogeneous embedding.

V. NUMERICAL RESULTS

The numerical results of three waveguiding configura-

tions will be presented. For the guided wave modes the

normalized mode index B is determined as a function of

the normalized frequency V, with

(26)

where n ~ = & is the refractive index of domain %..

The first numerical example is that of a step index

waveguide embedded in a homogeneous medium. The

Green’s function is then equal to the primary Green’s

function. For the fundamental modes the normalized dis-

persion curves are given in Fig. 2. These fundamental

modes are the hybrid, quasi-transverse electric and quasi-

transverse magnetic modes TEOO and TMOO respectively.

Contrary to what the results of Sharma et al. [17] suggest,

the fundamental modes of waveguides embedded in homo-

geneous media have no cutoff frequency (see Fig. 2). This

situation is analogous to the behavior of the fundamental

modes TEO and TMO of a symmetrical slab waveguide.

The results of the domain integral equation method (DIM)

are also compared with those from Goell [18] and with

those from the corrected effective index method (CEIM)

(van der Tol et al. [2]).

As a second numerical example, a diffused channel

waveguide has been studied, which was previously investi-
gated by Yeh et al. [6]. This diffused waveguide has a

rectangular core region which is embedded in a homo-

geneous substrate and is covered by a homogeneous

superstrata; the refractive indices of the substrate and the

superstrata are n, =1.44 and n. =1.00 respectively. The

numerical data of the circular diffusion profile are gener-

ated with the aid of [6, eq. (32)]. The number of subdivi-

sions L of the domain 9W is chosen as L = 338, in

conformity with the choice of Yeh et al. (cf. [6, fig. 25]).

For this value of L, the rib length of the subdomain Q; is

small compared with the wavelengths considered, and the

present method yields accurate results.
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Fig. 3. Dispersion curves of the fnndarnentaf modes TEm and TMm
for a step index waveguide with n~ = 1.47 and for a diffused wave-

guide with n. = n(x, y) =1 44+0.06(x2+ y2 – L2)/L2, where L =

(H2 + Xz)’i’ if Ivl > 1x1and L= (H2 + y2)1/2 if Iyl < 1x1.

TABLE I

THE NORMALImD MODE INDEX B OF THE TEOO MODE

FOR THREE VALUES OF THE NORMALIZED FREQUENCY

V/@ OF THE STEP INDEX AND THE DIFFUSED

WAVEGUIDE, RESPECTIVELY (cf. FIG. 3)

.——. —- -————-\.— --1

3 11 normalized mode-index B

~ v/iT nW =147 nW = n(x, y)

I TEOO TMOO TEOO TMOO

:472745 0.94843 I 0.94715 165588 I 1.64093

A1.18186 0.50572 0.47600 0.75599 0.67903

0.67535 0.05264 0.01209 007214 000246

In Fig. 3, the results for the normalized mode indices B

of the fundamental TEOO and TMW modes are presented

as a function of the normalized frequency V/n. For the

diffused waveguide, with n ~ = n (x, y), the results of the

domain integral equation method are compared with those

of Yeh et al. For the method used by Yeh et al., the results

for the fundamental modes coincide. The average refrac-

tive index in the rectangular waveguide is 1.47; therefore,

also the results of an identical rectangular step index

channel waveguide with n. = 1.47 are given in Fig. 3. For

the latter waveguide the results of the present method are

compared with those of the effective index method (EIM),

for both fundamental modes. Note that the cutoff frequen-

cies of the corresponding modes of the diffused and step

index waveguides are almost identical. This can be ex-

plained from the flat electric field distribution near the

cutoff frequency, where the mode in the diffused wave-

guide experiences the average refractive index. For large
normalized frequencies V the dispersion curves converge

for both waveguides for all methods applied. In Table I the

normalized mode index B is given for three values of the

normalized frequency V/T. The value n ~ = 1.47 has been

used in the expressions for B (eq. (26)) and V (eq. (27)).

Finally, numerical results for a polymeric single-ridge

waveguide are presented. This waveguide has been devel-



KOLK et u1.: DOMAIN INTEGRAL EQUATION ANALYSIS 83

nc =1 000 SUPERSTRATA

~nl=’556

/

nC=7000 SUPERSTRATA

n~=l 523 SUBSTRATE

Fig. 4. Intensity plot of the TEW mode (intensities: 10,20,..., 90,99);

R =1.0 pm, W/2= 4.0 pm, and H= 2.5 pm, with /l/kO =1.57081.

TABLE II
THE NORMALIZED MODE INDEX B OF THE TEOO MODE

FOR FIVE VALUES OF R OF THE RIDGE WAVEGUIDE

WITH AND WITHOUT BUFFER

LAYER (cf. FIGS. 4 AND 5)

n2 =1 523

T ,—111 =1556
BUFFERLAYER

nS=1523 SUBSTRATE

Fig. 5. Intensity plot of the TEW mode (intensities: 10,20,...,90, 99);

T= 2.0 pm, R =1.0 pm, W/2= 4.0pm and H= 2.5 pm, with /3/k0 =

1.57318.

nw=l 000 SUPERSTRATA

lkm==F=E0.76425 0.76365 0.80026 0.79963

~L u0.75659 0.75510 0.79446 0.79319

0.75217 0.75051 0.79089 0.78966

0.74950 0.74806 0.78866 0.78763

074837 0.74671 078781 0.78665

I n2 =1523

—n, .?556
T/ BUFFERLAYER

II— w/2—

R

H
llW=l 506

oped within the framework of the project Research on

Advanced Communication Technologies in Europe (RACE

1019). In a stack of polymeric materials (Diemeer [19]), a

ridge is photochemically formed using ultraviolet exposure

(Bennion [20]). Outside the ridge, the refractive index of

the film layer directly on top of the substrate decreases

from n ~ = 1.586 to nl = 1.556 for the wavelength in uacuo

AO = 1.335 pm. The ridge height R depends on the expo-

sure time. The refractive indices of the substrate n, = 1.523

and of the superstrata n, = 1.000 are fixed, as are the width

of the ridge W = 8.0 pm and the height of the film layer

H = 2.5 pm (see Fig. 4). So the actual ridge is the rectangle

with height R and width W, this ridge corresponds to the

domain $2W and represents the perturbation of the strati-

fied medium. The effect of an extra buffer layer with

refractive index n ~ = 1.523 and height T has been investi-

gated by calculating both mode indices and electric field

distribution of the TEM mode for T= 0.0, 2.0 pm. The

normalized mode indices B (cf. (26)) are presented for five

values of R in Table II. For R =1.0 pm the field distribu-

tions are illustrated for T= 0.0 pm in Fig. 4 and for

T = 2.0 pm in Fig. 5. The extra buffer layer improves the

confinement of the mode and provides a better overlap

with the electric field distribution of a single-mode fiber

(see Baken et al. [12]). A further increase in the height T
has a negligible effect on the mode indices and field

distributions. (For T= cc, itis found that the normalized

mode indices increase by less than 2 x 10-5 compared with

those for T = 2.0 pm.) In Fig. 6 the electric field distribu-

tion of the TMOI mode is displayed for R =1.0 pm and the

normalized mode index B = 0.73431. In all cases the field

n~ =1 523 SUBSTRATE

Fig. 6. Intensity plot of the TMOI mode (intensities: 10,20,...,90, 99);

T= 2.0 pm, R =1.0 pm, w/2= 4.0pm and H= 2.5 pm, with /3/k0 =
L56927.

outside the ridge is computed using the field inside, in

conformity with the domain integral equation method.

VI. CONCLUSIONS

A method has been presented for analyzing the propaga-

tion properties of optical waveguides embedded in strati-

fied media. The method is based on a domain integral

equation; the kernel of this integral is evaluated using an

operator formalism. No constraints are premised regarding

the shape and the refractive index profile of the waveguide

or the number of layers in which it is embedded. The

approach is completely rigorous and the numerical imple-

mentation yields reliable results for both large and small

values of the normalized frequency. This is confirmed by

the first two examples, where the results of the method

presented have been compared with those of several other

methods. For large values of the normalized frequency,

where the majority of the approximative methods give

accurate results, the mode indices calculated with the

present method and those of the approximative methods

converge. For small values of the normalized frequency,

i.e., near the cutoff frequency, the method presented be-

comes superior. The method has been successfully applied

to evaluate the propagation properties of a fabricated

polymeric ridge waveguide. Further research will comprise

the numerical implementation of other types of weighting
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and expansion functions, and the derivation of the domain

integral equation method for anisotropic and dispersive

media.

APPENDIX

ANALYTICAL INTEGRATION OF THE

GREEN’S FUNCTION

Taking for all the subdomains of Q: squares with rib

length 2d, the integrations in (23) over the subdomains Q:

and Q; can be performed analytically. The result for the

primary Green’s function is then

~,~,: (Ep x, k,: x’, y’)exp(- Jk},y) dx’dy’dxdy
“, .,

4 sin2$4~xp(–jk,(Yk-Y 1))
k:U33 v

{ gp’l+gp’2–!P”}. —
where

gp’l=—

and

k;+ U~2

o

0

(Ala)

[4]

[5]

[6]

[7]

[8]

[9]

[lo]

[11]

[12]

M. S. Stein, ‘<Semivectoriaf polarised H field solutions for dielec-
tric wavcguides with arbitrary index pro files,” Proc. Inst. Elec.
Eng., pt. J, vol. 135, no. 5, pp. 333-338, Oct. 1988.
S. Akiba and H. A Haus, “Variational analysis of opticaf wave-

guides with rectangular cross section,” Appl. Opt,, vol. 21, no. 5, pp.

804-808, Mar. 1982
C. Yeh, K. Ha, S B. Dong, and W. P. Brown, “Single-mode optical

waveguldes,” App/. Opt., vol. 18, no. 10, pp. 1490-1504, May 1979.

C. Pichot, “Exact numencaf solution for the diffused channel

wavegulde,” Opt. Cornrnun., vol. 41, no. 3, pp. 169-173, Apr. 1982
J. S. Bagby, D. N. Nyqnist, and B. C. Drachman, C’Integral formu-
lation for analysis of integrated dielectric waveguides,” IEEE Trans.
Microwaue Theo~ Tech., vol. MTT-33, pp. 906-915, Oct. 1985.

J. M vrm Splunter, H. Blok, N. H. G. Baken, and M. F. Dane,
“ Computational anafyws of propagation properties of integrated-
optlcal wavegmdes using a domain integral equation,” m Proc.
URSI Int. Symp. Electromag, Theo~v (Budapest) 1986, pp. 321-323.

S. M. Alr and S. F. Mahmoud, “Electromagnetic fields of buried
sources m stratified anisotropic media,” IEEE Trans. A ntemra
Propagat., vol. AP-27, pp. 671-678, Sept. 1979.

T, Sphicopoulos, V. Teodoridis, and F. E. Gardiol, “ Dyadic Green

function for the electromagnehc field in multilayered isotropic

media: An operator approach,” Proc. Inst. Elec. Eng., vol. 132
pt. H, No. 5, pp. 329-334, Aug. 1985.
N. H, G. B&en, J. M. van Splunter, M, B. J. Diemeer, and H. Blok,

‘-Computational modeling of diffused channel waveguides using a

{

2~d–l+exp(–2~d), Xk=xl

‘ 2sinh’(~d)exp(- ~lx’ – x’1),
(Alb)

Xk+x[

gp’2 1“=sgn(xk–x[) jkJJf O 0
—

jkzU, O 0
*

2sinh2(~d)exp(– L(-jxk –X1l),

/
o jkYU,

i
jk,lJ. o

,

and

“. /2q3diX@iX, Xk=xI

\
g’-” = o
— —>

—
Xk+x[”

Xk=xl

(Ale)
Xk+x[

(Aid)

The distances between the x coordinates, Xk – X1, and the

y coordinates, y ~ – Y[, of the barycenters of the subdo-
mains g~” and Q;, are multiples of 2 d. The resulting
integral of the Dirac delta function is eliminated by an

equivalent counterpart with an opposite sign.

The integrations of the scattered Green’s function over
the subdomains Q; and 2; are straightforward and

therefore not given.
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