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Domain Integral Equation Analysis of
Integrated Optical Channel and Ridge
Waveguides in Stratified Media

EVERT W. KOLK, NICO H. G. BAKEN, anp HANS BLOK, MEMBER, 1IEEE

Abstract — A domain integral equation approach has been developed to
compute both propagation constants and corresponding electromagnetic
field distributions of guided waves in an integrated optical waveguide. The
waveguide is embedded in a stratified medium. The refractive index of the
waveguide may be graded, but the refractive indices of the layers of the
stratified medium are assumed to be piecewise homogeneous. The wave-
guide is regarded as a perturbation of its embedding, so the electric field
strength can be expressed in terms of a domain integral representation.
The kernel of this integral consists of a dyadic Green’s function which is
constructed using an operator approach. By investigating the electric field
strength within the waveguide, an integral equation can be derived which
represents an eigenvalue problem which is solved numerically by applying
the method of moments. The application of the domain integral equation
approach in combination with a numerically stable evaluation of the
Green’s kernel functions provides a new and valuable tool for the charac-
terization of integrated optical waveguides embedded in stratified media.
Numerical results are presented for various channel and ridge waveguides
and are compared with those of other methods where possible.

I. INTRODUCTION

ITH THE INCREASING number of applications
Wof integrated optical devices, the need for mathe-
matical models to analyze their waveguiding properties is
growing (Lagasse et al. [1]). As the design criteria for these
devices, such as directional couplers and modulators, be-
come tighter, the results of approximative methods often
do not have the desired accuracy. Examples of approxima-
tive methods are the (corrected) effective index method
(van der Tol et al. 2], Knox et al. [3]), the finite-difference
method (Stern [4]), and methods based on a variational
technique (Akiba et al. [S]). Examples of rigorous methods
are the finite-element method (Yeh et al. [6]), and the
domain integral equation method (Pichot [7], Bagby et al.
{8], van Splunter ef al. [9]). In the domain integral equation
method the waveguide is regarded as a perturbation of its
embedding; thus a domain integral equation can be de-
rived for the electric field strength within the waveguide.
The kernel of the domain integral equation is the Green’s
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function of an electric current line source. For the deriva-
tion of the Green’s function, the method presented by Ali
et al. [10] and Sphicopoulos ef al. [11] has been modified
and extended, thus leading to a numerically stable calcula-
tion scheme. The application of the domain integral equa-
tion method in combination with a numerically stable
evaluation of the Green’s kernel functions provides a new
and valuable tool for the characterization of integrated
optical waveguides embedded in stratified media. As such,
the domain integral equation method for the modeling of
diffused channel waveguides, presented by Baken er al.
[12], is extended and allows for the first time a rigorous,
alternative modeling of channel and ridge waveguides in
stratified media.

II. FORMULATION OF THE PROBLEM

The waveguide 2, is embedded in a stratified mediom.
This embedding comprises N subdomains, the layers
D,,2,, -, Dy (N =2). Two of the subdomains are semi-
infinite domains, namely the substrate &; and the super-
strate &,. The layers 2, (1<n<N), each with finite
thickness, are sandwiched between %, and Z,. The posi-
tion in space is specified using a right-handed Cartesian
reference frame Oxyz; the x axis is taken perpendicular to
the interfaces of the layers. The z axis is chosen such that
the material properties of the waveguiding configuration
are invariant in the z direction. A cross section perpendic-
ular to the z axis is given in Fig. 1. All media are assumed
to be dielectric. The permittivities of the layers are con-
stant; thus the (relative) permittivity profile of the embed-
ding can be described with the stepwise-constant function
€,(x). The permittivity of the waveguide &, may be
inhomogeneous: €,(x, y).

Time-harmonic solutions of the source-free Maxwell’s
equations are sought that represent guided wave modes
propagating in the positive z direction. The electromag-
netic field constituents of angular frequency « and axial
wavenumber k, have the form

{E,H}(x,y,z;0)={e,h}(x,y,k ;0)exp(— jk,z)
(1)

where the complex time factor exp( jwt) is omitted. The
waveguide 2,, being regarded as a perturbation of the
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embedding, the electric field e¢ and the magnetic field A
satisfy the Maxwell’s equations:

~V,Xh+ joeg,(x)e=—J
V. Xe+ joph=0

)
where v,=(4d,,d,,— jk,) and J represents the electric
contrast-source current density that is defined within the
waveguide 2, through

I(x,y) = joeo{ e, (%, y) —ep(x)fe(x, y)  (3)
and vanishes everywhere outside 9,,. Using Lorentz’s re-

ciprocity theorem, an integral representation for the elec-
tric field for all values (x, y) can be derived:

e(x,y)=-jwuofg G(x, ysx', y)J(x', y') dx’dy" (4)

with G being the dyadic Green’s function of the electric
type of an electric-current line source. This Green’s func-
tion is the solution of the inhomogeneous wave equation

VXV, X_Q__ k(z)eb(x)g=£8(x_x,) S(y_ y,) (5)

with 8(x) the Dirac delta function, I the 3-by-3 identity

matrix, and k,=w’gp,. Note that the relation in (4)
expresses the electric field at an arbitrary point (x, y) in
terms of the Green’s function and the electric field within
the waveguide. If the point (x, y) is chosen within the
waveguiding region %, (4) becomes a domain integral
equation for the electric field e within 2,. Solving this
equation can be regarded as solving an eigenvalue prob-
lem. The equation yields nontrivial solutions for a discrete
set of values of k, that correspond to the propagation
constants of propagating guided wave modes. Once these
values have been determined, the corresponding electric
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field within 2, can be computed. Subsequently the elec-
tric field outside the waveguide can be evaluated from (4).
To execute the procedure outlined in the foregoing, the
kernel of the domain integral equation, the Green’s func-
tion, must first be determined.

III. DERIVATION OF THE GREEN’S FUNCTION

The kernel of the domain integral equation is the Green’s
function G, which satisfies the inhomogeneous wave equa-
tion (5). The right-hand side of the latter equation vanishes
in every layer except 2, in which the electric current line
source is situated. Therefore, the Green’s function G, in
an arbitrary layer 9, can be written as the composition of
a primary and a secondary part:

G,=G?8,+G5 withne{1,---,N} (6)
where 8,; is the Kronecker delta. The primary Green’s
function G? is the particular solution of the inhomoge-
neous wave equation; the secondary or scattered Green’s
function G¥ is the complementary solution:

VtXV,Xgp~—kszgp=£6(x—x')8(y—y’)
VXV, X Qg_ krzggi= 0. (7

In (7) the wavenumber of the layer &, is introduced
through k2= k32,. The Green’s functions in two succes-
sive layers are connected through the boundary conditions.
To solve the wave equations they are submitted to a spatial
Fourier transformation defined by

(8)

The primary Green’s function in the (x, k) domain is
then given by

ﬂ:(x; ky) =f_ F(x, y)exp(jkyy) dy.

G"(x,k,;x',y") = WU g7 exp (= Ulx — x'exp (Jk,»")

1
e 8(x —x")exp(jk,y')i,®i,
(%)
with
k2 + U2 sgn (x — x) jk,Uj
kI —k;
—k,k,

sgn (x — x') k.
—k k,
k:—k?

sgn (x = x') jk, U

1109
I

sgn (x — x) jk.U,

(9b)

In (92), the tensor product is used (i,®i,),, = §;8,;, and
in (9b) the sign function sgn(x —x)=—1,0,+1 if x<
x',x=x',x > x’ respectively. The phase factor U, is de-

fined as
Un=\/k)2,+kz2—k3. (10)

The principal value is taken for the root in (10); ie.,
Re(U,) > 0 or Re(U,) =0 and Im(U,) > 0. When the ho-
mogeneous wave equation is submitted to the Fourier
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transformation, a first-order ordinary differential equation
is obtained which has a solution of the form

Gh= x—x,))+Blexp(+U,(x — x,))

(11)

where the matrices 4, and B; contain constants which can
be interpreted as the amplifudes of upward and downward
wavelets respectively. To derive expressions for these ma-
trices, and implicitly for the scattered Green’s function, the
boundary conditions for the electric Green’s function and
the expression for the primary Green’s function are used.
The expression for the scattered Green’s function in the
(x, k,) domain in layer &, then becomes

1
2k2U

Arexp (-

G5 (x.kyi 3. v') = 5o +{ dyexp (U (x— x,))

+ B oxp(+U,(x—x,) bexp (jk,») (122)

where the matrices 4~n and En are given by

‘ifn(ky; x/) =g§g=~1AH+ gSEAE
Bn(ky; x') = g B+ gSEBE (12b)
with
. —(k2+Kk2)%
~SH — S 2
Enie ™ 2y (6 +42),
(k2 +K2)
P I 0
~SE_ s 2 _
B e |0k Kok
0 —kk, k2

In (12), the symbol o is used to condense the notation; as
indicated in the subscripts in (12b), it can take the values
+1 and —1. The expressions for the matrices in (12b)
show that they can be separated into two parts. The first
part, with the superscript SH, is the electric Green’s func-

source in x = x’ at the interface x = x_, is given by

Dl _ —exp(—Us(xs—x')) (14)
D,| \xexp(+U(x,—x'))
de

where gn o xX —f— gn alx and gn olxX def ngo L

For the downward recurrence transmission and reflec-
tion functions, in which the superscript n’ « N’ indicates
the transition from layer 2,. to layer 9,, the following
relations are used repeatedly, starting with n+2= N’
until n=n":

—n+l__ +1len+2 n+len+2
(P =g e 2y et 2exp (—21)

rfz_<—n+1= rnt£+1<—n+2+tnrﬁ+1<~n+lexp(_2,’.n)
ti(_n+1= rnr_r:_+1<—n+2+ tnti+1<—n+26Xp(_2Tn)
prontlo g prilontdy pynilentlexn(—21) (15a)
N —1 N def N'—1e N def
1y TN = ry = (15b)
and
def def v
e
7= U,(x,—x,_,) sy (16)
1=s+1

— jk (K2 +Kk2)Uo  — jk,(k2+k2)Ug
- k2UL, ~ k, kU, (12¢)
— k,kUU, - kU,
(12d)

The expressions for the scalars 4, and B, in (13) apply to
both the electric and magnetic contributions. The trans-
mission and reflection factors, however, are different for
the electric and magnetic contributions; they are given by

tion of the transverse magnetic contribution. The second B =14 TP B =1-TF® (17
part, with the superscript SE, is the electric Green’s func-
tion of the transverse electric contribution. The scalars A where.
and B, for layer &,, where n> s, can be expressed using
the downward recurrence transmission and reflection func- A= Ui [E= 11 (18)
tions (see Sphicopoulos et al. [11]): T UE, - U,
A, _exp(— 07 —2n . tn NS g N e Nl esexp(=21) | [ D, (13)
B, rew pre Nl rr Nl Sexp(—21) [\ D,

The vector (D,, D,)”, which can be interpreted as a source
vector expressing the strength of the electric current line

Equivalent expressions can be derived for the scattered
Green’s function in the case of n < s
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The recurrence scheme of Sphicopoulos et al. [11] for
the transmission and reflection coefficients in (15a) has
been modified so as to yield a numerically stable imple-
mentation. The correctness of the expressions for the scat-
tered Green’s function can be verified by taking ¢, = ¢, =

- =e€,. In that case the interfaces are virtual; in fact,
only the primary Green’s function exists. Indeed, the scat-
tered Green’s function becomes identical to the primary
Green’s function in every layer 2, where n #s.

IV. NUMERICAL IMPLEMENTATION

In order to find the nontrivial solutions of the domain
integral equation, the method of moments is applied.
The domain &, is divided into L subdomains 9!,
le{1---,L}. For both the expansion and the weighting
functions, the rectangle function rect’ is used (Galerkin’s
method (Harrington [13])). This function takes the value 1
within 9/ and vanishes outside 9. Assuming that the
electric field strength in 9! is constant and equal to the
actual electric field strength e/, in the barycenter (x/, y*) of
9], the method of moments yields the result

L
f dxdyek =Y k2 (e —eb)
2,

-1

~

X l;%[%g(x» y;x', ')y dx'dy’ dxdye!,

with ke {1,---L} (19)
. def def .

if €/, =¢,(x',y") and €, = ¢,(x"). With (19), a system of
3% L algebraic equations is derived for the unknown elec-
tric field strength ef=(ef , ek > € k ), which can be
rewritten as

L
L T osl,=0 (=nna (0
In (20), the 3* L by 3* L matrix S is defined by
def
S,’;I = |:MII;[_ SkISiJ'/-@kdxdy] (21)

8 and §,, being Kronecker deltas, and

M’/j[=kg(€iv_€§))‘[@,“[@‘i(;zj(xa y;x/; y,) dx,dy’dxdy.
(22)

Subsequently, the system of algebraic equations is solved
by searching for those values of k, =" for which the
determinant of the 3* L by 3* L matrix S vanishes. Once
these eigenvalues 8" have been determined, the accompa-
nying vector in the null space of S can be calculated.
Obviously, the eigenvalue B corresponds to the propaga-
tion constant of the propagating guided mode m, and the
eigenvector to its electric field distribution within the
waveguide 2,. In the numerical evaluation of MK

l_]’
the spatial Fourier-transformed Green’s function
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(ilj(x, ky;x', y") is used instead of G, (x.y;x", y"). To
avoid the logarithmic singularity in the so-called self-patch,
Le., when k=1 (see Yaghjian [14] and, more recently,
Viola [15]), the order of the Fourier and subdomain inte-
grations in M}! is interchanged:

MY — kz(w_eg)*%fj:{/@k// NERNFENY)

-exp(—jkyy)dx'dy'dxdy} dk,. (23)

The integrations over 2% and 2! can be performed
analytically; the result is given in the Appendix.
Computation times for the numerical evaluation of the
system’s matrix S are substantially reduced by exploiting
the reciprocal properties of the Green’s function and from
the possible presence of geomeirical symmetries in the
waveguiding configuration. The former make it possible to
restrict the calculation of the Green’s function to values
x = x’, since
(24)

G, (x,y:x", ¥y k)=G (X, yx, yi—k_).

The latter allows a reduction of the size of the system’s
matrix by distinguishing between “odd” and “even” field
solutions. The poorly converging inverse Fourier integral
with the factor kf in the { ®i, component of the primary
Green’s function (cf. (9b)) is avoided using the relation
k% —k2=k?—U? (cf. (10)). For the computation of (23),
the integration interval (— co,+ o0) is reduced to [0, + o0).
Subsequently, fast Fourier transforms can be applied and
the scalars 4, and B,, which are equal for all components
of the scattered Green’s function, can be precalculated
(cf. (13)).

When in the guiding region the permittivity € (x, y) is
continuous, the unknown field quantities should be contin-
uous as well. The method of moments executed with point
matching does not satisfy this condition and leads to
nonphysical charge layers on the boundaries of the subdo-
mains, and this could lead to numerical instabilities. How-
ever, in the applied implementation, these difficulties do
not arise; an increase in the number of subdomains leads
to a monotonic convergence of the results toward the exact
solutions (Baken et al. [12]). Finally, it should be noted
that the denominator t* " in (13) is the characteristic
function of the stratified medium (Tsang [16]). The zeros
of this function are the propagation constants £, of the
transverse electric and transverse magnetic propagating
slab modes TE , and TM,,, respectively. These propagation
constants are encountered as simple poles in the integrand
of the inverse Fourier integral in (23). The poles only
appear on the real k, axis if 8™ is smaller than BS,. In
that case their location is

kp=y{ B8R}~ (™). (25)

Difficulties arise only if kf =0, and these can be circum-
vented by then taking the stratified media slightly lossy.
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Fig. 2. Dispersion curves of the fundamental modes TEy, and TMg, of
a rectangular waveguide in a homogeneous embedding.

V. NUMERICAL RESULTS

The numerical results of three waveguiding configura-
tions will be presented. For the guided wave modes the
normalized mode index B is determined as a function of
the normalized frequency ¥V, with

(B™/ko)’—n?

B= 26
R (26)
V=kohfn?—n? (27)

where n, = \/;: is the refractive index of domain 2,.

The first numerical example is that of a step index
waveguide embedded in a homogeneous medium. The
Green’s function is then equal to the primary Green’s
function. For the fundamental modes the normalized dis-
persion curves are given in Fig. 2. These fundamental
modes are the hybrid, quasi-transverse electric and quasi-
transverse magnetic modes TE,, and TM,, respectively.
Contrary to what the results of Sharma et al. [17] suggest,
the fundamental modes of waveguides embedded in homo-
geneous media have no cutoff frequency (see Fig. 2). This
situation is analogous to the behavior of the fundamental
modes TE, and TM, of a symmetrical slab waveguide.
The results of the domain integral equation method (DIM)
are also compared with those from Goell [18] and with
those from the corrected effective index method (CEIM)
(van der Tol er al. [2]).

As a second numerical example, a diffused channel
waveguide has been studied, which was previously investi-
gated by Yeh er al. [6]. This diffused wavegnide has a
rectangular core region which is embedded in a homo-
geneous substrate and is covered by a homogeneous
superstrate; the refractive indices of the substrate and the
superstrate are n,=144 and n,=1.00 respectively. The
numerical data of the circular diffusion profile are gener-
ated with the aid of [6, eq. (32)]. The number of subdivi-
sions L of the domain £, is chosen as L =338, in
conformity with the choice of Yeh er al. (cf. [6, fig. 25]).
For this value of L, the rib length of the subdomain 2/ is
small compared with the wavelengths considered, and the
present method yields accurate results.

12 T T T T T T T

10

08t

06

04

02

Q2 04 26

=

28 10 12 14 16
V/T
Fig. 3. Dispersion curves of the fundamental modes TEy, and TMy,
for a step index waveguide with n,,=1.47 and for a diffused wave-
guide with n, =n(x, y)=144+006(x>+ y? ~ [?)/I?, where L=
(H? + x)Y2 if |y = |x}and L=(H?*+ >V if |y|<|x|

TABLE I
THE NORMALIZED MODE INDEX B ofF THE TE,, MODE
FOR THREE VALUES OF THE NORMALIZED FREQUENCY
V/% OF THE STEP INDEX AND THE DIFFUSED
WAVEGUIDE, RESPECTIVELY (cf. FIG. 3)

" normalized mode-index B

o V/r ny =147 n, = n{x,y)

i TEo | TMgo | TEg | TMgo

‘T4 72745 || 0.94843 | 0.94715 | 1 65588 | 1.64093
1.18186 | 0.50572 | 0.47600 | 0.75599 | 0.67903

_0.67535 || 0.05264 | 0.01209 | 007214 | 0 00246

In Fig. 3, the results for the normalized mode indices B
of the fundamental TE,, and TM_, modes are presented
as a function of the normalized frequency V/#. For the
diffused waveguide, with n, = n(x, y), the results of the
domain integral equation method are compared with those
of Yeh et al. For the method used by Yeh er al., the results
for the fundamental modes coincide. The average refrac-
tive index in the rectangular waveguide is 1.47; therefore,
also the results of an identical rectangular step index
channel waveguide with n,,=1.47 are given in Fig. 3. For
the latter waveguide the results of the present method are
compared with those of the effective index method (EIM),
for both fundamental modes. Note that the cutoff frequen-
cies of the corresponding modes of the diffused and step
index waveguides are almost identical. This can be ex-
plained from the flat electric field distribution near the
cutoff frequency, where the mode in the diffused wave-
guide experiences the average refractive index. For large
normalized frequencies V' the dispersion curves converge
for both waveguides for all methods applied. In Table I the
normalized mode index B is given for three values of the
normalized frequency V/w. The value n,=1.47 has been
used in the expressions for B (eq. (26)) and V (eq. (27)).

Finally, numerical results for a polymeric single-ridge
waveguide are presented. This waveguide has been devel-
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Fig. 4. Intensity plot of the TEy, mode (intensities: 10,20,- - -,90,99);

R=1.0pm, W/2=40pm, and H=2.5um, with B/k, =1.57081.

TABLE II
THE NORMALIZED MODE INDEX B OF THE TE;, MODE
FOR FIVE VALUES OF R OF THE RIDGE WAVEGUIDE
WITH AND WITHOUT BUFFER
LaYER (cf. F1GS. 4 AND 5)

normalized mode-index B

| R (um) T = 0.0um T = 2.0um
| EIM | DIM | EIM | DIM
i 0.5 0.76425 | 0.76365 | 0.80026 | 0.79963
i 1.0 0.75659 | 0.75510 | 0.79446 | 0.79319
i 15 0.756217 | 0.75051 | 0.79089 | 0.78966

2.0 0.74950 | 0.74806 | 0.78866 | 0.78763
.25 074837 | 0.74671 | 0 78781 | 0.78665

oped within the framework of the project Research on
Advanced Communication Technologies in Europe (RACE
1019). In a stack of polymeric materials (Diemeer [19]), a
ridge is photochemically formed using ultraviolet exposure
(Bennion [20]). Outside the ridge, the refractive index of
the film layer directly on top of the substrate decreases
from n,=1.586 to n; =1.556 for the wavelength in vacuo
Ao =1.335 um. The ridge height R depends on the expo-
sure time. The refractive indices of the substrate n, =1.523
and of the superstrate n,=1.000 are fixed, as are the width
of the ridge W =28.0 pm and the height of the film layer
H = 2.5 pm (see Fig. 4). So the actual ridge is the rectangle
with height R and width W; this ridge corresponds to the
domain 2, and represents the perturbation of the strati-
fied medium. The effect of an extra buffer layer with
refractive index n, =1.523 and height T has been investi-
gated by calculating both mode indices and electric field
distribution of the TE,, mode for T=0.0, 2.0 pm. The
normalized mode indices B (cf. (26)) are presented for five
values of R in Table II. For R =1.0 pm the field distribu-
tions are illustrated for T=0.0 pm in Fig. 4 and for
T=2.0 pm in Fig. 5. The extra buffer layer improves the
confinement of the mode and provides a better overlap
with the electric field distribution of a single-mode fiber
(see Baken et al. [12]). A further increase in the height T
has a negligible effect on the mode indices and field
distributions. (For T =0, it is found that the normalized
mode indices increase by less than 2 X103 compared with
those for T=2.0 um.) In Fig. 6 the electric field distribu-
tion of the TM; mode is displayed for R =1.0 pm and the
normalized mode index B =0.73431. In all cases the field
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Fig. 5. Intensity plot of the TEy, mode (intensities: 10,20, - -,90,99);
T=20pm, R=10pm, W/2=40pmand H=25pm, with B/k,=
1.57318.

N, =1000 SUPERSTRATE
‘ n,=1523
T My =136 BUFFERLAYER
J W/2
¥
R/ 10

4 |
H n,=1586
10
Ng=1523 SUBSTRATE
_Fig. 6. Intensity plot of the TM; mode (intensities: 10,20,- - -,90,99);

T=20pm, R=1.0pum, W/2=40pmand H=2.5pm, with 8/k,=
1.56927.

outside the ridge is computed using the field inside, in
conformity with the domain integral equation method.

V1. CONCLUSIONS

A method has been presented for analyzing the propaga-
tion properties of optical waveguides embedded in strati-
fied media. The method is based on a domain integral
equation; the kernel of this integral is evaluated using an
operator formalism. No constraints are premised regarding
the shape and the refractive index profile of the waveguide
or the number of layers in which it is embedded. The
approach is completely rigorous and the numerical imple-
mentation yields reliable results for both large and small
values of the normalized frequency. This is confirmed by
the first two examples, where the results of the method
presented have been compared with those of several other
methods. For large values of the normalized frequency,
where the majority of the approximative methods give
accurate results, the mode indices calculated with the
present method and those of the approximative methods
converge. For small values of the normalized frequency,
i.e., near the cutoff frequency, the method presented be-
comes superior. The method has been successfully applied
to evaluate the propagation properties of a fabricated
polymeric ridge waveguide. Further research will comprise
the numerical implementation of other types of weighting
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and expansion functions, and the derivation of the domain
integral equation method for anisotropic and dispersive
media.

APPENDIX
ANALYTICAL INTEGRATION OF THE
GREEN’S FUNCTION

Taking for all the subdomains of 2% squares with rib
length 24, the integrations in (23) over the subdomains 2
and 2! can be performed analytically. The result for the
primary Green’s function is then

_[‘@A./;’gp(x’k):x,’y/)exp(_jk),J/)dX’dy'dxdy

[4] M. S. Stern, “Semivectorial polarised H field solutions for dielec-
tric waveguides with arbitrary index profiles,” Proc. Inst. Elec.
Eng., pt. 1, vol. 135, no. 5, pp. 333-338, Oct. 1988.

[5] S. Akiba and H. A Haus, “Variational analysis of optical wave-
guides with rectangular cross section,” Appl. Opt., vol. 21, no. 5, pp.
804-808, Mar. 1982

[6] C. Yeh, K. Ha. S B. Dong, and W. P. Brown, “Single-mode optical
wavegudes,” Appl. Opt., vol. 18, no. 10, pp. 1490-1504, May 1979.

[71 C. Pichot, “Exact numerical solution for the diffused channel
waveguide,” Opt. Commun., vol. 41, no. 3, pp. 169-173, Apr. 1982

[8] J.S. Bagby. D. N. Nyquist, and B. C. Drachman, “Integral formu-
lation for analysis of integrated dielectric waveguides,” TEEE Trans.
Microwave Theory Tech., vol. MTT-33, pp. 906-915, Oct. 1985.

[91 J. M van Splunter, H. Blok, N. H. G. Baken, and M. F. Dane,
“Computational analysis of propagation properties of integrated-
optical waveguides using a domain integral equation,” 1 Proc.
URSI Int. Symp. Electromag. Theory (Budapest) 1986, pp. 321-323.

[10] S. M. Al and S. F. Mahmoud, “Electromagnetic fields of buried
sources 1n stratified anisotropic media,” IEEE Trans. Antenna
4 ) (k d) Propagat., vol. AP-27, pp. 671-678, Sept. 1979.
B SRy ox (_ % ( k_ 1)) {11] T. Sphicopoulos, V. Teodoridis, and F. E. Gardiol, “Dyadic Green
o kU3 k2 P JrY y function for the electromagnetic field in multilayered isotropic
£ Y media: An operator approach,” Proc. Inst. Elec. Eng., vol. 132
pt. H, No. 5, pp. 329-334, Aug. 1985.
. { g‘P-l 3 gP-Z — g’P~3} (Ala) [12] N. H. G. Baken, J. M. van Splunter, M. B. I. Diemeer, and H. Blok,
= = = “Computational modeling of diffused channel waveguides using a
where
K2+ U? 0 0
o s s 2U.d —1+exp(—2Ud), xk=x!
ghi=| 0 K2— k2 —k k. - L L (Alb)
= : s 2sinh® (U,d ) exp ( ~ U|x* — x/)), x*#x
0 —kk, k2—k?
and
0 kU, jkU, e
SENn{ X X . C
g an ) J_ s 2sinh? (U,d ) exp ( — Uy x* — x')), xk# x! (Alc)
KU, 00
and
s Ui ®i,, xk=x'
gh? = Ald
§ 0, xk =+ x! ( )

The distances between the x coordinates, x* — x’, and the
y coordinates, y*— y/, of the barycenters of the subdo-
mains 2 and %) are multiples of 2d. The resulting
integral of the Dirac delta function is eliminated by an
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The integrations of the scattered Green’s function over
the subdomains 2% and 9! are straightforward and
therefore not given.
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